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Abstract 

This paper provides a framework for analyzing white noise disturbances in linear sys- 

tems. Rather than the usual stochastic approach, noise signals are described as elements 

in sets and the disturbance rejection properties of the system are considered in a worst 

case setting. The description is based on constraints in signal space, directly verifiable 

on experimental data. These constraints can be given a representation compatible with 

standard robust control, allowing the formulation of white noise rejection problems in the 

presence of other sources of uncertainty. It is also shown how the framework can capture 

as a special case the usual stochastic approach, with equivalent results. 

1 Introduction 

Inaccuracies in mathematical models of physical systems are often characterized by the in- 

troduction of external disturbances, which account for phenomena which are too complex or 

unpredictable to be conveniently captured by the model. A model must then be accompa- 

nied by a description of the disturbance, and this implies a basic choice in the mathematical 

framework. The deterministic approach is to  specify a set of allowable disturbances, and leads 

to  worst case analysis over this set. Alternatively, the stochastic paradigm specifies a measure 

(probability distribution) in the disturbances, and leads naturally to  analysis in the average. 
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The two relevant factors underlying this choice are mathematical convenience and the 

objective of obtaining a realistic and tight characterization of the empirical disturbance. 

Probabilistic models have been the typical choice for white noise disturbances, which 

appear, for example, when considering the cumulative macroscopical effect of very high di- 

mensional fluctuations at  the microscopic level. Indeed, a stochastic process seems to  provide 

a very good approximation to  these phenomena, and in many cases this leads to  tractable 

mathematics. An example of this in control theory is the classical 'Hz (LQG) disturbance 

rejection problem, namely the design of a feedback system which minimizes the (average) 

sensitivity of a linear system to stochastic noise. 

The stochastic paradigm is less attractive, however, in practical control problems where 

disturbances coexist with other forms of uncertainty, such as unmodeled dynamics, which are 

described more naturally in a deterministic setting. In this robust control setting, mathemati- 

cal convenience calls for deterministic disturbance rejection problems (e.g. 'H,, L1) where the 

disturbance is allowed to  vary in a given set (e.g., the unit ball of L2,  L,). Even though this 

leads to  a successful robustness analysis methodology, some conservatism is involved in these 

deterministic classes, since the signals which give worst case performance (e.g. persisting 

sinusoids, in the 'H, case) are often very unlikely disturbances in practical situations. 

Attempts to  combine deterministic uncertainty with stochastic white noise (the "Robust 

'Hz" problem, see for example [17]) face the difficulty of analyzing simultaneously the worst 

case effect of the uncertainty and the average effect of the disturbance, and have only resulted 

in upper bounds. Similar difficulties arise when attempting to  establish closer connections 



between classical system identification and robust control, since the former relies entirely in 

the stochastic paradigm for disturbances. 

An important remark is that there is nothing inherently stochastic about white noise: it is 

known that deterministic chaotic systems can produce spectral effects indistinguishable from 

random noise. 

This discussion leads us to  the main objective of this paper, which is to obtain tight 

deterministic descriptions for white noise, suitable for robust control purposes. We now 

specify in more detail the objectives these set descriptions should meet: 

1. They must allow a finite time horizon formulation; this is essential if these descriptions 

are to  be used in practical problems involving data, such as system identification. 

2. They must be rich enough to include "typical" instances of stochastic white noise signals. 

3. They must be tight enough, so that worst case rejection properties of a system under 

disturbances of the set are essentially the same as average rejection properties under 

stochastic white noise. 

4. They must allow for a mathematical formulation similar to other deterministic descrip- 

tions of uncertainty, to permit a simple formulation of robust performance problems. 

The deterministic approach to statistical spectral analysis is not new and goes as far 

back as Wiener [19]; a modern reference is [lo]. However, these treatments rely entirely on 

asymptotic properties of signals defined on infinite time intervals, and are not focused on the 

rejection problem and the related robustness issues. 
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In what follows we will present a very natural formulation compatible with the previous 

requirements; the starting point is the following question: how does one decide whether a 

signal can be accurately modeled as a stochastic white noise trajectory? Deciding this from 

experimental data leads to a statistical hypothesis test on a finite length signal. In other 

words, one will accept a signal as white noise if it belongs to a certain set. The main idea of 

our formulation is to take this set as the definition of white noise, and carry out the subsequent 

analysis in a deterministic setting. 

The paper is organized as follows: Section 2 contains the notation and some preliminary 

facts; in Section 3, time domain descriptions are given, and they are analyzed from the 

point of view of the competing requirements (2) and (3). In Section 4, the same is done 

with descriptions in the frequency domain. Section 5 provides the multivariable extension 

of the previous framework. Section 6 summarizes the work and outlines a resulting research 

direction, which allows for these descriptions to be cast in the mathematical framework of 

robust control. Some technical proofs are covered in the Appendix. 

2 Notation and Preliminaries 

This paper deals with discrete time signals and linear time invariant systems. In sections 2, 

3, and 4 we will consider scalar signals and single inputlsingle output (SISO) systems. The 

multivariable version is given in Section 5. Notation and elementary properties of spectral 

analysis are presented in this section, in both finite and infinite time horizon cases. 



2.1 Finite horizon properties 

In the finite horizon case, we wish to  characterize white signals among sequences of length 

N ,  and the steady state response of a linear system to such a disturbance. Therefore, to  

get sensible answers we must assume that N is much larger than the system time constants. 

Under this assumption, the system gain will not be substantially affected if we consider the 

signals to  be periodic, with period N ,  and we have available the information of one period. 

In fact, the system will not be sensitive to  these "long range" correlations we have introduced 

in the input signals. As a counterpart, this gives tractable expressions. 

Let x(t) be a periodic, real valued signal, of period N ,  which will often be identified 

with the finite sequence x(0).  . . x ( N  - 1). The discrete Fourier transform (DFT) X(k) ,  k = 

0 .  . - N - 1 of the sequence x(t) is defined by the relations 

As a map between CN and CN the DFT as defined is a unitary operator scaled by m. 
The (circular) autocorrelation sequence of x ("correlogram") is given by 

and the sequence power spectrum ("periodogram") by s,(k) = IX(k)I2, k = 0 . .  . N - 1. 

It is easy to  show that the sequences r,(r) and s,(k) form a DFT pair. For an N-periodic 

signal x(t), we will use as norm the energy over the period, llxllZ = ~ ~ ( 0 )  = + ~fz: sx(k). 

We consider a stable, LTI, discrete time SISO system X(X) = C,OO=-, h(t)Xt, where X is 

the shift operator. The frequency response (Fourier transform of h(t)) is denoted by 'Ft(ejW). 



For a fixed N, denote H(k) 2 'Ft(ejg9 (if 'Ft is FIR of length less than N ,  this corresponds 

to  the DFT of h(t)). The autocorrelations of the system 7-t are defined by 

assuming convergence for every T (this is true if, for example, 7-t is causal, exponentially 

stable; this will be assumed in the rest of the paper). The Fourier transform of rh(T) is the 

power spectrum sh(ejw) = 17-t(ejw)12. Also, the 2-norm of the system is given by 

As an immediate consequence of the previous definitions, the following relationships hold. 

Lemma 1 Let 7-t be a SISO discrete time stable system. Let u(t) be an N-periodic input 

signal to system X, y ( t )  be the corresponding steady state (periodic) output. Then 

2.2 Infinite horizon properties 

Autocorrelations and spectra can be defined in different classes of infinite horizon signals. We 

will mention here bounded power signals and bounded energy (12) signals. In the bounded 

power case, consider the class 

I N  
= { t )  : ( T )  = lim - x(t + ~ ) x ( t )  exists for each T 

N--+a 2N + 1 
t=-N 

For 12 (square-integrable) sequences, define rX(r )  = (x, XTx) as in (3). In both cases, it can 

be shown that there exists a spectral density s,(ejw) such that 



For the bounded power case, this follows from Bochner's theorem (see [5]), and sx(ejw)dw is 

in general a nonnegative measure. In the l2 case, sX(ejw) = IX(ejw)12, where X(ejw) is the 

Fourier transform of x(t). l2 is equipped with the standard norm 1 1 ~ 1 1 ~  = T.(O)~, BP with the 

seminorm llxllP = T,(o)~ .  

Under mild assumptions on the system W ,  (5) carries through to  infinite horizon. Also, the 

corresponding extension of (6) is s, (ejw) = I H (ejW)12s,(ejW). 

3 Time domain descriptions 

3.1 Finite horizon descriptions 

The starting point for a deterministic white noise theory is to characterize white signals among 

all sequences of length N; when faced with the problem of deciding whether an empirical 

signal is a sample of white noise, a statistician will perform a hypothesis test in terms of 

some statistic. A common choice is the sample autocorrelation, which should approximate 

the expected correlation for white noise (a delta function). In other words a scalar signal 

is x(t) categorized as white if rX( r )  is small compared to rx(0) for nonzero T in a certain 

range (e.g. for values of T smaller than a horizon T). Pictorially, the autocorrelation plot, 

normalized to  rx(0) = 1, must fall inside a band around zero, of width y,  as in Figure 1. 

From the classical statistical point of view, the choice of y is associated to  a level of 

significance of the test, which in turn depends on some stochastic model. But regardless of 



Figure 1: Autocorrelation plot of a pseudorandom sequence 

the reasoning behind this choice, ultimately the "whiteness" of the signal is decided in terms 

of a set, which is parameterized by y (and T). This motivates the following: 

Definition 1 A signal x(t), t = 0 - - N - 1 is said to be white with accuracy y up to time 

lag T if it satisfies 

l r z ( ~ ) l  5 yrz(0) r =  l . . . T  (9) 

The set of all such signals is denoted WN,y,T 

It is natural to introduce a horizon T in which the autocorrelations are required to  be 

small; this reduces the number of constraints, and if the response of a system is t o  be analyzed, 

low correlation is only relevant in time scales where the system responds strongly. Both y 

and T are, in fact, a parameterization of a rectangular weight function which specifies our 

constraints on the autocorrelation. Other shapes of this weight function could be considered, 

and the following results can be extended with minor modifications. 

The response of an LTI system to signals in such sets will now be analyzed. The worst 



case gain of the system under signals in WN,y,T (a seminorm on systems) will be denoted 

~ ~ 7 - 1 ~ l ~ N , ~ , ' l '  ( lo )  

Theorem 1 In the conditions of Lemma 1, if Eyrn Irh(t)l < 00, 

3. For the special case X(X) = c:=, h(t)Xt (7-1 is FIR), 

Proof: (11) follows immediately from Lemma 1, and the definition of WN,?.,T. Specializing 

on T = 0 gives (12). The upper bound in (13) follows from (12), the lower bound from the 

fact that the delta function is always a signal in the set WN,-,,T. 

Remarks : 

1. From inequality (11) we conclude that the autocorrelations of the time series y (up 

to a constant factor 11~11~) lie in a band centered in the autocorrelations of the filter. 

Therefore, such a band is a natural set description for colored noise, the output of a 

linear filter under'white noise. 



2. It can be shown (see [14]) that if y < $, then for large enough N the upper bound in 

(13) is achieved. This is no longer true for large values of y;  for example, if y = 1, there 

are no restrictions on the input signal, and the induced norm can be bounded by the 

1-1, norm of the system which in the FIR case is equal to  . 
T 

SUP (7', (0) + 2 2: 7'h ( T )  COS UT 
W ~ = l  

and is in general strictly less than the bound (13). The role of y in this deterministic 

approach is therefore to  constrain the freedom of the "adversary" (the disturbance), 

and results in a worst-case gain which varies from the 1-1, norm for y = 1 to the X2 

norm for y = 0. Ideally, one could use y = 0 but on a finite horizon setting, this would 

constitute an unrealistically small class of signals. This raises the issue of trading off 

between the objectives 2 and 3 stated in Section 1: obtaining low worst case gains on 

sets which accommodate a reasonable class of signals. 

To analyze this we turn to asymptotic results, as the length N of the data record goes to  

infinity and find rates of y,  T that achieve this compromise. First, we give conditions under 

which the asymptotic norm is the 7 i 2  norm, which follow obviously from Theorem 1: 

N-+, Corollary 1 1. If T is  fixed, 1-1 FIR (T), and y ( N )  - 0, then I(l-lllWN,y,T N-+w - 111-1112. 
N-+, 2. If T ( N )  N< m, and y(N) - 0, 1-1 IIR, then lll-lllw ,,,,, N- II1-1IIa . 

Secondly, a natural requirement for a set description as in definition (1) to  be rich enough 

is that the set have "large" probability when the signal effectively comes from a stochastic 

white process: this is how these sets are chosen in the standard statistical approach. A 

reasonably general answer is the following ( P  denotes probability): 



Theorem 2 Let x(O), . . , x(N - l ) ,  . . . be independent, identically distributed random vari- 

ables, with 0 mean and finite variance. For each N ,  denote X N  = (x(O), - . - , x(N - 1)). 

N+ca N+oo 
1. If T isfixed, and y ( ~ ) n  -+ m ,  then P ( X N  E WN,-(,T) --$ 1. 

2. If the z(t) are bounded, and 7 ( ~ ) J &  N-03 
N-03 - o;), then 7' (xN E WN,-(,N-I) -i 1. 

N+m 3. If the x(t) are Gaussian, and y(N)- Nz m ,  then 7' (xN E WN,-(,N-l) i 1. 
log(N) 4 

Proof: See the Appendix. 

For parts 2, 3, T ( N )  = N - 1 was chosen (all the entries of r,(r) are constrained; in fact, 

it is equivalent to  constrain up to  T ( N )  = 1:J). This type of result is different from those 

which have typically been considered in the statistical literature, where a small number of T 

values is employed, and substantial "averaging" is available. As will be discussed later, there 

are also reasons in this setting to reduce the number of constraints. It seems interesting, 

however, that the autocorrelation plot captures "whiteness" uniformly across all values of T; 

this is a strong argument in favor of the use of this statistic. This result also supports the 

notion of distance employed in the correlogram, in terms of the vector m norm. In the next 

section we will see that the "periodogram" is not as well behaved. 

In any event, by showing that the asymptotic probability of WN,y,N-l is 1, it immediately 

follows that the same holds for liVN,-(,*, with a smaller growth rate of T. 

A simple way to summarize the preceding results in relation to  stochastic white noise, is 

to  say that the expected gain of an LTI system to white noise (the 7-tz norm), is essentially the 

same as the worst case gain of the system in a set of signals which is "typical" from the point 
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of view of the probability, when the mechanism which generates the disturbances is assumed 

to  be stochastic. 

As remarked before, this assumption cannot be directly verified, and there is evidence that 

non-stochastic systems (e.g. deterministic chaos, see [I] and references therein) can produce 

similar spectral properties. 

Another situation where disturbances are considered is as "residuals" of some system iden- 

tification technique, i.e. an error variable needed to explain the experimental data. Though 

the system identification theory assumes a stochastic model for this disturbance, in practice 

it always includes other deterministic (e.g. nonlinear) effects. 

The previous results show that in terms of rejection, what matters is the statistical infor- 

mation (which may be directly tied to  experiments), not the generating mechanism. Auto- 

correlation constraints which characterize a disturbance (and may or may not be consistent 

with the levels for stochastic noise) can be incorporated into a worst-case rejection measure. 

3.2 Infinite horizon descriptions 

We conclude the section by considering the infinite horizon counterpart of definition 1. For 

brevity, we will treat 12, BP signals simultaneously. 

Definition 2 A signal in l2 (or in BP) is said to be white, with accuracy y up to time lag T 

if it satisfies 

I rz(~)I  5 yrz(o> T =  1 . . .T (I4) 

The set of all such signals is denoted W y , ~ .  



For an exponentially stable 'Ft, defining the norm II'FtlIW7,T analogously to  (10) i t  can be 

concluded in a similar way as before that 

It is tempting to  consider the set Wo,, = {x(t) E BP ,  r,(r) = 0 V r  # 0). In this class, 

(which is the one used in other deterministic spectral analysis treatments, such as [lo]) the 

induced norm is exactly 11'Ftllwo4, = 11'Ft112, and moreover, for the bounded power case the 

class contains trajectories of stochastic white noise: 

Theorem 3 Let x(O), . . , x(t), . - . be independent, identically distributed random variables, 

with 0 mean and Jinite variance. Then P (x E Wo,,) = 1 (Wo,, c BP). 

Proof: For a fixed T # 0, referring to  [5] (proposition 6.31)) we find that the random process 

z(t) = x(t)x(t $ T) is ergodic, so with probability 1, 

l N  
lim - x(t + r )x( t )  = E[x( t+  ~ ) x ( t ) ]  = O 

N - a  2N + 1 t=-N 
(16) 

Therefore Wo,, has probability 1 (countable intersection of probability 1 sets). 

These results on Wo,, are not, however, particularly useful for the following reasons. In the 

first place, the constraints on a bounded power signal depend exclusively on its asymptotic 

behavior: any sequence in RN is a valid truncation of a white power signal. From a practical 

perspective, it is impossible to  know whether a disturbance is in Wo,,(BP), just as it is to  

verify that a signal is generated by a stochastic white process. In this respect, it seems that 

the l2 version is a better behaved infinite horizon abstraction; if a sign$l in l2 is truncated with 
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large enough N so as to  capture most of its energy, then the autocorrelations are essentially 

determined by the truncation. 

Also, when dealing with uncertain systems, constraints on the signals must be enforced 

explicitly in any analysis or synthesis procedure, as will be discussed below. The definition 

of Wo,, requires an infinite number of constraints, which cannot be handled. In the case 

of a finite number, such as in Wy,T (liVg>T in particular), these constraints can be naturally 

introduced into a robustness analysis or synthesis problem, as is shown in [15]. 

4 Frequency domain descriptions 

4.1 Finite horizon descriptions 

In the frequency domain, the natural object of study is the power spectrum; as the name 

implies, a "white" signal is characterized by a flat power spectrum. Referring to  finite length 

signals, presumably a set characterization of whiteness can be obtained by specifying the 

periodogram s,(L) to  be close to a constant across 5;  it is difficult, however, to  find a notion 

of distance in which this holds for typical white noise signals. Figure 2 shows a typical 

periodogram of a signal obtained from a pseudorandom number generator. As we can see, 

the periodogram is very erratic, and is not close to  its average value in a pointwise sense. 

Various authors (see [6] and references therein) have studied the stochastic properties of the 

periodogram. In the case of Gaussian noise, for example, the following can be shown: 

Proposition 1 Let x ( t ) ,  t = 0 . - . N - 1, be independent, complex Gaussian random variables, 

of mean zero and variance 1. Then T, k = 0 . .  . N - 1 are independent mndom variables of 
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Figure 2: Periodogram of a pseudorandom sequence 

exponential distribution, with expected valse 1, and the expected valse of m a r k  9 grows as 

Log(N) when N-too. 

This means that if we attempt to characterize white noise by a band of power spectra 

around a constant value, this band would have to grow arbitrarily to  be able to  capture 

stochastic noise. It is not hard to show that the worst case gain under signals in such a band 

would approach the 7-1, norm of the system; therefore, this description would not be tight 

enough for our purposes. Sets of spectra defined in terms of other simple vector norms can 

also be shown to be not satisfactory for similar reasons. 

The fact that a "raw" periodogram of a noise signal is not a very well behaved statistic 

has long been recognized in the statistical spectral analysis community (see [3]). Peaks in 

the periodogram do not necessarily correspond to underlying periodicities in the time-series, 

and from this point of view the autocorrelation plot is more significant. Another way to  say 

this is that the frequency domain is not a natural set of "coordinates7) to  uncover trends in 

noisy data. Rotating the data back to the time domain (autocorrelation plot) gives a tight 



description for "whiteness": small distance to the delta function in the vector oo norm. 

There is, however, a way around this difficulty that has been used extensively in statistical 

spectral analysis, in terms of smoothing of the periodogram (see [18, 61): adequate local 

averaging in the periodogram reveals the process spectral information. In this section, we 

will pursue the same smoothing approach to provide set descriptions of white noise. Instead 

of smoothing by convolution (as in [14]) in this paper we will adopt an approach of averaging 

in a set of bands: given a uniform filter bank V,(k), m = 0 - .  - M  - 1, a white signal will be 

characterized by having approximately equal energy on these bands. Various designs for the 

filter bank could be considered; in this paper we will assume for simplicity that the length of 

the signal is a integer multiple of the number of bands N = MK, and that the filter bank is 

made of ideal bandpass filters of the form 

1. m K  5 L < (m f 1)Ii' 
Vm(L)= 

0 otherwise 

Definition 3 Let N = M K .  Define the filter bank V = {V,(k), m = 0 .  - M - 1) as i n  (17) 

A signal x(t) of length N is said to be white with accuracy a ,  with respect to the filter bank 

V, if i ts periodogram s, (L) verifies 

max (sx,Vm) 
" 1 1 ~ 1 1 ~  

W e  denote the set of all such signals as w ~ , ~ , V .  

In the definition, the inner product (s,, V,) averages the periodogram in the band. The 

requirement is that the (normalized) band averages be close to the global average of 1 (since 

these are nonnegative quantities, constraining from above suffices). With these definitions, 



results which parallel those in the time domain can be written. The worst-case induced norm 

of a system 7-t under signals in the set I @ ~ , ~ , V  will be denoted 113-111 WN,=,V .  - 

Theorem 4 Consider a stable LTI system H ,  such that B ma% I -&IH(ejw)121 is finite. 

Then 

2n(m+l)  

Proof: Denote hm = JwM IH(ejw)12dw. Note that $ hm = 1 1 ~ 1 1 : .  

If mK < k < ( m  + l ) K ,  then 

2 Let u ( t )  be a signal in fiN,a,v, llull = & ~ f r d  s U ( k )  = 1,  y the corresponding output. 

For the second term in (21) ,  the bound ( 2 0 )  gives 

Since u E WN,ol,V, N - 1  

(su Vm) = C su ( k ) V m ( k )  < 1 + a 

Also, for signals with s u ( k )  = 1 the left hand side of (23)  achieves the value 1. Therefore the 

supremum of the first term in (21)  is bounded between 1lHll and (1 + a )  /17-1/(;. Incorporating 

(22) ,  the supremum of I I ~ ( / ~  is between the bounds in (19).  
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N-oo N-oo Corollary 2 In  the conditions of Theorem 4, if a ( N )  ---t 0, and M ( N )  -+ oo, then 

Theorem 5 Let x(0), - .  ., x(N - I), . be independent, Gaussian, zero mean random vari- 

N-oo N-oo ables. For each N ,  denote X N  = (x(O), - ., x(N - 1)). Assume a ( N )  - 0, M ( N )  - oo, 
NCUZ N+oo 

and M L o g ( M )  - 00. Then 

N-oo 
p (xN E w N , a , V )  1 

Proof: See the Appendix. 

The previous statements provide the frequency domain counterpart of the time domain 

N+oo asymptotic results. Provided a ( N )  N= 0, M ( N )  -+ CG with appropriate rates (e.g. 

M ( N )  = a, a ( N )  = w), the worst case disturbance rejection measure approaches the 

'Ha-norm of the system, while the class of signals contains asymptotically all typical instances 

of stochastic white noise, at least in the Gaussian case. 

We have introduced essentially dual descriptions in time and frequency domains, of pa- 

rameterized sets which describe white noise. With the chosen definitions, however, these sets 

are different: the time and frequency domain constraints do not correspond to  each other 

through DFT. Such a correspondence can be achieved if the Euclidean norm is used to  mea- 

sure distance in both domains (the DFT is unitary), and smoothing in the frequency domain 



is performed by convolution. The resulting signal constraints are more complicated, however, 

since they involve fourth powers of the signals. 

As mentioned in Section 1, an important objective in the choice for these descriptions is 

their simplicity and compatibility with representations for uncertainty. From this point of 

view, constraints which are quadratic in the signals involved are especially adequate. This fact 

has been recognized in the work of Yakubovich [20] and Megretski [13], where uncertainty is 

described in terms of integral quadratic constraints (IQCs). Alternatively, in [15] it shown how 

these set characterizations for white noise can be easily fit into the standard linear fractional 

transformation (LFT) framework for uncertainty, expressing these sets as kernels of LFTs on 

uncertain operators. This is the underlying motivation for our particular choices for the sets. 

In any event, for large N and these choices of parameters, both time and frequency 

definitions capture sets of signals which are "likely" if we adhere to  a probabilistic model, 

and which produce approximately the same worst-case disturbance rejection measure; from 

the point of view of the objectives of this paper, they are equivalently adequate descriptions 

for white noise. 

4.2 Infinite horizon descriptions 

An infinite horizon (in 12, or BP)  counterpart of the set w ~ , ~ , ~  is now given. A filter bank 

V = {V,(ejw ), m = 0 . . . M - 1) is used, where the integral across frequency of each V, is 1. 

Definition 4 Given a filter bank V = {Vm(ejw), m = 0.9 . M - I), an l2 (or BP) signal z ( t )  

is said to be white with accuracy a, with respect to the filter bank V, if its spectral density 



S, (ejw ) verifies 

1 2" 2n 

max - S, ( e j w ) ~ m ( e j w ) d ~  5 (1 + a ) l  s,(ejY)dw 
m 2n 2n 

We denote the set of all such signals as w ~ , " .  

For the case of an filter bank with ideal bandpass filters, 

2n(m+1) M % < W < ~  
Vm(eJW) = 

0 otherwise 

we arrive in a similar manner to  the bound 

nB 11x11; 5 l l ~ l l ; ~ , v  5 11x11; (1 + a )  + p 

5 The rnultivariable case 

This section outlines how the previous methodology can be extended to deal with vector 

valued white noise signals. For reasons of brevity and simplicity we will only consider the 

case of infinite horizon l2 signals, which demonstrates all the necessary extensions. 

For vector-valued signals x(t) E 12(Rn), the matrix autocorrelation (prime denotes trans- 

pose, * denotes conjugate transpose) is given by 

and the matrix spectrum by S,(ejw) = X(ejw)X*(ejw), where X(ejw) is the Fourier transform 

of x(t). They are related as in (8). The 2-norm of the signal verifies 

Consider a stable, discrete time linear time invariant system with in general n inputs 

and p outputs, x(X) = x,"=-, H(t)Xt, with frequency response X(ejw). We define RH(r)  = 



c,"=-, H ( t  + r ) H 1 ( t )  and S H ( e j w )  = 3-1(ejw)3-1*(ejw). The 2 norm of 3-1 satisfies the relation 

(30) .  If u ( t )  E l z ( R n ) ,  y ( t )  E 12(RP) are respectively, the input and output to  3-1, then the 

following relations hold: 

Now we give set descriptions of vector valued white noise. In the time domain, R,(r) 

should be small for T + 0 ,  and that R,(O) must be approximately a constant times the 

identity matrix. This implies that in addition to  the components of x ( t )  being scalar white 

noise signals, they must be "spatially" uncorrelated. 

Some matrix norms will be used in the following: I 

IIAII, = 2:~ Iaij I I = I I IIAIIF = ( t r a c e ( ~ I ~ ) ) '  = 
i , j  

Note that 

I t r a c e ( A B ) I  5 1 1  Alloo llBlll I t r a c e ( A B ) l  5 llAllF llBllF (33)  

Definition 5 A signal x ( t )  E l z ( R n )  is said to be white with accuracy y up to time lag T i f  

it satisfies 

We will denote the set of all such signals by W;,,. 

In the definition, S(r) is the usual delta function, and the norm I I . I I u  referred to  in the 

definition can be in principle any matrix norm. The norm l l - l l m  has the advantage of giving 

quadratic constraints on the signal. Defining (IXII as in ( l o ) ,  we have: 
Wy", T 



T h e o r e m  6 Defining W;,, in  terms of the matrix norm l l . l l O O  

Proof:Let llull = 1, u E W;,,,. Starting from (31) ,  

Using (33) ,  and the fact that llR.(~)11~ 5 1/u112 for T + 0 we have 

Under similar growth conditions as in Corollary ( I ) ,  the asymptotic norm is $ II'Flllz 

For a frequency domain characterization, consider 

Definition 6 Given a filter bank V = {V,(ejW), rn = 0 .  . .A4 - I } ,  an 12(Rn) signal x ( t )  

is said to be white with accuracy a ,  with respect to the filter bank V ,  i f  i ts spectral density 

Sx(ejw ) verifies 

The set of all such signals is denoted I@&. 

Will not pursue the subsequent analysis, which follows the same lines as before. 



6 Conclusion 

In this paper, set characterizations of white noise in terms of constraints in signal space were 

presented. It was shown how these sets can be "tailored7' t o  adequately capture stochastic 

noise, retaining its properties in terms of system gain, now understood in a worst case setting. 

The parameterization allows, however, a greater flexibility in signal characterization, and the 

finite horizon version allows these descriptions to  be tied directly to  experimental data. 

The bounds obtained for worst-case gain on these sets of signals are useful in showing 

that this procedure is sound and consistent with the alternative stochastic approach, but 

they are not exact and too complicated to  provide a basis for robust performance analysis 

when the system 3-1 is subject to uncertainty. The major argument given in Section 1 in favor 

of adopting these deterministic descriptions was, after all, to  unify white noise rejection with 

robustness analysis. Fortunately there is an elegant framework (developed fully in [15]) which 

encompasses our deterministic descriptions of white noise with other forms of uncertainty in 

the system. This framework relates to  the IQC [20, 131 formulation, and to  recent develop- 

ments in uncertain behavioral systems [7]. The resulting methods for "Robust R2" analysis 

and synthesis have been pursued in [15, 81. 

This framework can be extended, to  some degree, to  continuous time systems. While 

"pure" white noise is a difficult object to  define, it is clear that useful approximations can be 

obtained, for example, from sets of signals defined in terms of frequency domain characteri- 

zations, in a similar manner to the discrete time case. 

The finite horizon version of this framework can also be applied to  the area of worst-case 



system identification. Recent work 19, 161 has shown that if noise disturbances are allowed to 

be arbitrary norm bounded signals, the identification problem has high computational com- 

plexity. It is to  expect that constraining the disturbance in the style of this paper (constraining 

the freedom of the "adversary7' in the identification problem) will bring some reduction in 

complexity. 

Appendix 

The stochastic results will be proved here. In the sequel, x(0) . x(N - 1) . . are independent, 

identically distributed random variables, of 0 mean and finite variance. Since the sets WN,y,T 

and w ~ , ~ , ~  are closed under scalar multiplication, the variance can be normalized to  1. 

Proof of Theorem 2: 

Part 1: For the case of a fixed time lag r ,  the distribution of the autocorrelation r,(r) 

has been extensively studied in the statistical literature [3, 2, 121; exact expressions for the 

distribution of rX(r)/rx(0) when x ( t )  is Gaussian are obtained in [2], and asymptotic normality 

holds. We outline a proof for completeness. 

A central limit theorem on the r-dependent (see [4]) random variables z(n) = x(n)x(n+r)  

N - 7 - 1  shows that En=, x(n)x(n + r )  is asymptotically normal N(0 , l ) .  Since r is fixed, the 

"circular" terms are vanishingly small, and the same holds for &r,(r). Also +rX(0) converges 

almost surely to  1, so fls is asymptotically normal. Since 7fl -+ m, and T is fixed, 



In parts 2 , 3  of the theorem, the number of correlation constraints grows with the sample size, 

and the argument with the normal approximation cannot be used: even though each r,(r) 

for fixed r is asymptotically normal, the joint distribution of (r,(l), -r ,(N - 1)) is defined 

on a space of increasing dimension, where no global "averaging" occurs. Our proof relies on 

a Hoeffding inequality for sums of bounded random variables, [ l l] :  

Theorem 7 (Hoeffding) Let zo, - .  -ZN-X be independent random variables, of mean p and 

bounded (a 5 z, < b), 2 = z,. Then for 6 > 0, 

- 2 ~ r '  

P ( Z - p > t ) < e c b - . , "  (38) 

To apply this inequality to  the sum r,(r) = z(t), with z(t) = x(t)x((t + r)modN), the 

following lemma takes care of of the slight dependence between the terms, by dividing the 

sum in three sums, ensuring z(t), z((t + r)modN), z((t - r)modN) fall in different groups for 

each t .  We omit the elementary proof, which requires a discussion on the values of N and r .  

Lemma 2 Let N 2 3, and x(0), x(1) . .x (N - 1) be independent identically distributed ran- 

dom variables. For fixed 1 < r < $, there exists a partition (depending only on N , r )  of the 

terms in the sum r,(r) into three groups, giving r,(r) = So + $1 + S 2 ,  where each Si is the 

sum of ni independent random variables, and ni > f . 

Part 2: Assume x(0). . .x (N - 1) are bounded random variables, Ix(t)l 5 K. Pick 1 5 

r 5 $. From the lemma r,(r) = So + S1 $ S2, where each Si is the sum of ni independent, 



identically distributed random variables, with zero mean and bounded in [-K2, K2]. Invoking 

Hoeffding7s inequality and ni 2 f ,  we have 

The same argument can be employed to  bound 7J (-9 > c), for each value of T .  This 

implies 

- By symmetry of r,(r), WN,-( ,~- i  - WN,-(,g. NOW choose 0 < p < 1. The complement of 

WN,-( ,~- l  can be written as 

The probability of the first set is bounded by (40), setting E = yp. The probability of the 

second set can be bounded by another use of the Hoeffding inequality, applied to  the bounded 

IID random variables x(t)'. Putting everything together, 

The second term clearly goes to  to  zero as N + m ,  and the same happens with the first term 

since by hypothesis (N)J& N-cc - 00. 

Part 3: Assume x(0) . . .x (N - 1) are Gaussian random variables, x(t) N ( 0 , l ) .  Choos- 

ing K ( N )  = d m ,  define the random variables v(t), t = 0 e e e N - 1 by truncation: 

v(t) = x(t) iflx(t)l < K ( N )  
0 otherwise 



In (44) x = (x(0) - .  .x (N - I)), v = ( ~ ( 0 ) .  - -v(N - I)) ,  and the second inequality follows from 

a standard bound to  the tail of the normal distribution (C is a constant). Observing that 

i t  remains to  show that P (v @ WN,y,N-l) also vanishes as N+oo. Since the variables v(t) are 

bounded by K(N) ,  (42) gives 

P (a Si! WN,-,,N-I) L 3e (46) 

The second term clearly has limit 0 as N-oo. The first term also goes to 0, since by hypothesis 

NyZp2 - 2 Ny2 
K ~ L O ~ ( N )  - 4 L Q S ( N ) ~  goes to  infinity. 

Proof of Theorem 5: 

For simplicity we consider the complex Gaussian case. From Proposition 1, 9, 0 2 k 5 

N - 1 are independent, exponential random variables with mean 1. (for the real case, the 

same holds for 0 < k < 5 ,  but s,(O), s,(f) have a different distribution, and the spectrum 

is symmetric around $; the proof can be extended to  this case). If AK is the sum of K 

independent, exponential, mean 1 variables, the bound 



holds for any positive integer p. Let E = z, Ir' = 5 .  We can write 

Focusing on each set in the second union, K(%,Vm) is the sum of K exponential, mean 1 

random variables. Choose p = 191. Using (47)) 

(49) 

As N-too, a+O, and 5 N :, E = $. This gives 

P p a Ii'a2 - N a 2  N+W - +co. (50) 
LogM LogM 3 9LogM 9MLogM 

Therefore the probability in (49) goes to  zero as N --too. As for the first set in (48)) 

since > N- M, and using asymptotic normality. 
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